Graphing Inequations

Question 1:

A = {x: |x + 2| < 3}

B = {x: (2x – 1)³ < 8x³ – 13x² + 6x + 3}

a) Sketch the graph of A on an axis;
(2 marks)
___________________________________
___________________________________
___________________________________
___________________________________
___________________________________

b) Find the equations of the two straight lines that
make up the modulus function. (3 marks)
____________________________________
____________________________________
____________________________________

Equation 1 = __________   Domain = ________

____________________________________
____________________________________
____________________________________

Equation 2 = ___________ Domain = ________
k

c) Find the solutions of A, express your answer in
set notation. (2 marks)
_____________________________________
_____________________________________
_____________________________________
_____________________________________
_____________________________________
_____________________________________
_____________________________________

d) Find the intersection of B. (3 marks)
_____________________________________
_____________________________________
_____________________________________
_____________________________________
_____________________________________
_____________________________________
_____________________________________
_____________________________________
_____________________________________
_____________________________________
_____________________________________
_____________________________________
_____________________________________
_____________________________________

e) Find the solutions of A  n  B (2 marks)
______________________________________
______________________________________
______________________________________
______________________________________
______________________________________
______________________________________
______________________________________
______________________________________
______________________________________
______________________________________

Leave a Reply

Your email address will not be published. Required fields are marked *